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The reusable source of a pulsed magnetic field - -  a ballistic magnetocumulative generator 
(BMG) - -  /s considered. Electrical engineering analysis of the efficiency of operation of 
the generator on an active-inductive load is performed. A method for calculating the two- 
dimensional distribution of the field in the busbars of the generator is developed. Experimental 
results are obtained for the operation of a BMG model on some types of load. 

The existing types of pulsed magnetic field generators and those being developed are primarily capacitor 
storages with large working voltages or magnetocumulative generators, among which explosive expendable 
installations are in most common use [1]. So-called linear compression generators operating on the principle 
of "a reverse rail" gun have been mentioned repeatedly in the literature [2, 3], but insufficient experimental 
results are available for just one of such generators - -  a coaxial source of a pulsed current of up to 10 MA 
using a closing cylindrical armature [4]. The armature was previously accelerated in a ballistic setup and 
then, flying along a coaxial system of busbars, compressed the magnetic field. This installation can be called 
a ballistic magnetocumulative generator (BMG). The complex system of current supply, which, by virtue 
of the coaxiality of the main busbars, fails upon entry of the armature, and also the short working section 
of the generator [4] make the generator unsuitable for some problems, including the powering of high-speed 
electrodynamic accelerators for action on rocks, etc. A BMG with a rather long working section can be used 
as a source of energy for such high-speed installations. Of considerable interest is the possibility of applying 
a BMG to geophysical electroprobing using current pulses generated in a special coil or a loop [5]. A pulsed 
MHD-generator with a pulse duration of 1-100 sec developed in the USSR [6] has been used to advantage on 
such problems. A BMG produces short pulses (up to 10 msec), which can be treated as S-pulses for geophysical 
probing processes. The wide frequency spectrum of such signals allows a considerable increase in the probing 
resolution [7]. 

Figure 1 shows a diagram of a linear BMG which is a continuation of the barrel of a ballistic installation 
(gun). The electrical circuit of the BMG is formed by one or several turns of busbars 4 located lengthwise on 
the inner surface of the generator channel 3. Preliminary powering of the BMG from an additional source 2 
(a capacitor bank or a storage battery) gives rise to a magnetic flux in the generator volume. Entry of the 
armature 1 leads to short-circuit of the turns, the flux is compressed, and the magnetic-field energy of the 
generator and the load 5 increases due to the kinetic energy of the armature. When the BMG operates on an 
active-inductive load, the energy gain is determined by the two dimensionless parameters 

ct = 2R1/LIv, ~ = L1/LII, 

where R1 and L1 are the load resistance and inductance, L ~ is the inductance per unit length of the generator, 
v is the speed of the armature, and l is the generator length. 

Using the approximation of constant speed of the armature, it is possible to obtain analytical 
dependences of the gain on the parameters a and 8. In the case of a working load in the form of ohmic resistance 
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RI, the gain for the output  Joule energy Q = [ R~i2dt is defined as k, = Q/Wo, where W0 = 0.5(L~ +L'I) i~ is 
0 

the initial magnetic energy of the circuit. As shown in [8], the dependence kc(tr,/~) in this case has the form 

k~ = 1 - t r  

For an energy gain, it is necessary that the conditions a < 1 and # < 1 be satisfied. The analysis in [8] shows 
that obtaining a considerable gain k~ for the operation of the BMG on an active loading (R1 > 10 mfl) is a 
complicated engineering problem. 

The best coupling is attained when the BMG operates on an inductive load L1 with low resistance 
(RI < 1 raft). In this case, the working energy is defined as WI = 0.5Lli 2, and the gain is kt = W]/Wo. The 
dependence ke(a, 8) in the approximation L1 '~. Ill (8 ~ 1) has the form kt = ~ a - l .  In the case of small Joule 
losses (a  ~ 0), this dependence becomes the known relation for ideal (lossless) circuits k, = 1//~ = L'I/L~, 
i.e., the gain is defined as the ratio of the iIiitial inductance of the circuit, which is equal to  Ul provided that 
L1 ~ Lq, to the final inductance L1. 

The above relations give the integral performance of the BMG in an electrical engineering 
approximation. For an accurate calculation, it is necessary to determine the electromagnetic field in the 
entire volume of the generator. When the generator length is great compared to its cross section (caliber), one 
can ignore edge effects and consider this electrodynamic problem of determining the electromagnetic field in 
a two-dimensional approximation for the cross section of the generator channel. Figure 2 shows a diagram of 
one-turn BMG with busbars of rectangular cross section. In the calculation of the powering of the generator 
by a capacitor bank we solve, following [9], the two-dimensional diffusion equation 

7(OA/Ot) = + 7E (1) 
where 7 = ap (a is the conductivity and p is the absolute magnetic permeability), A is the vector potential, 
which has one component along the z axis of the channel in the two-dimensional case considered, and E r is 
the z component of the "extraneous" field in the busbars, which in our case (the capacitor discharge) is the 
capacitor field. 

At the initial time, the intensity E c is maximal, but the current density j in the busbars is equal to 
zero because it also depends on the time derivative of the vector potential: 

j = a ( -aA/Ot  + Er (2) 

Substituting the initial condition for the vector potential A = 0 into (1), we obtain c3A/Ot = E c, which, 
according to (2), gives j = 0. 

After completion of the stage of powering of the generator by the capacitor, for example, at the 
moment the current is maximal, there are certain distributions in the busbars of the current density j ,  the 
magnetic induction B(Bx, By), and the vector potential A. At this moment, the conducting armature - -  
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sliding contact - -  begins to move along the busbars of the generator, leading to compression of the magnetic 
flux. In this stage, the distributions of the vector potential and the magnetic field in the busbars are also 
calculated using Eq. (1). However, the field E c is no longer related to the electrostatic field of the capacitor 
but it is an induced field with an unknown distribution over the cross section of the busbars. In determining 
the field E c, we take into account that the current density is obtained as in the case of the electrostatic field 
from formula (2). It is obvious that in any case (the capacitor field E c or the induced field E c) the following 
energy equality should be satisfied: 

J J jE~ 2p 
v(o v(~) 

Here V(t) is the time-varying volume occupied by the field. This equality follows directly from the Maxwell 
equations in a quasistationary approximation (ignoring displacement currents), which is allowable in our case 
b~cause the characteristic time of field variation is about 1 msec. On the other hand, for the generator with 
moving armature, the following balance equation should be satisfied: 

- - ( /  ) ( /  ) - ( /  ) /3' v a t  z A z  B2(t + At) dz dy + Az .  z - -  d=dy. (4) 2pz S B2 dz dy q- ~ s B2 dz dy "- 2p s s a 

Here z is the current (at time t) length of the generator section that has not yet operated, and v is the 
velocity of the armature; integration is performed over domain S, which is the entire plane X OY, and in the 
last integral, the domain S can be replaced by the cross-sectional area of the busbars. The left side of Eq. 
(4) contains energy terms that correspond to the magnetic-field energy at time t and the work done by the 
armature against the magnetic-pressure forces in time At. The right side contains the magnetic-field energy 
at time t + At and the energy dissipated in time At. This equation can be written as 

[/ (~  + l aB---2,~dxdy] = v--rB2dxdy. (5) 
s ~'Js 

Cqmparison of (5) and (3) shows that the field E c required for the calculation should satisfy the equality 

j EC dv = V- [ B2 dx dy. 

For the two-dimensional case, the last equality is written as 

s Ps  
Here 

J=-p  \ Ox O-yy ]" 
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The induced field can be represented as 

Then, for the function ~, we have 

(OB  

s 

EC = v '~(z,y). 
Z 

$ 

Integrating by parts and taking into account that the boundary of the domain of integration S is rather 
distant from the current-carrying busbars, where the magnetic-field induction decreases to zero, we obtain 

s s 

The last equality is valid if the function �9 satisfies the following system of equations: 
a~  a~  
Oz = - B y ,  Oy = Bz. 

Taking into account that  the equation divB = 0 leads to the potentiality of the vector with components ( -Bu,  
Bx), we obtain the following integral representation for the function ~: 

P(z,y) 

�9 [P(x,y)] = f ( - B , d ~  + Bzdy). 
0 

The result does not depend on the integration path. In particular, choosing the integration path as shown in 
Fig. 3, we obtain 

z Y 

= - / s,,(r y) de + / B,(o,,1) (6) 
o o 

For busbars that are symmetric about the axis OX, we have Bs(0, T/) -- 0 and, finally, 

= s = / Bdr162 (7) 
Z Z J 

o 

where e is the induced e.m.f., which is equal to the rv, te of change of the magnetic flux through the region 
enclosed by the streamline that  passes through the point with coordinates (z, y). The last result could be 
written immediately from the induction law, but the analysis performed led to the more general expression 
(6), which is also valid for asymmetric bnsbars. 

In contrast to the above electrical engineering approximation, in which the armature velocity was 
constant, in the numerical model, the armature velocity is calculated in each time step using the equation of 
motion 

dv 1 L, i2 ' 
M d-7= 

where M is the mass of the armature, L ~ is the inductance per unit length of the bnsbars, and i is the generator 
current. 

Equation (1) is solved by a difference method using an implicit scheme and decomposition along 
coordinates [i0]. To make the algorithm universal outside of the bnsbars, we introduce a fictitious small 
conductivity equal to I0-5-10 -~ of the conductivity of the busbar material. We consider a generator with 
busbars of width h = 0.1 m and channe] diameter b = 0.1 m (see Fig. 2). These values are in close to those 
of the experimental generator. For such dimensions, as calculations show, the effect of the busbar thickness 
on the current strength is insignificant. This is due to the relatively small Joule losses and the weak effect of 
the current-distribution characteristics over the cross section of such busbars on the magnetic energy. In the 
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calculations, we determine the effect of the busbar thickness and material on the current density at various 
points of the cross section of the busbar, in particular, on the busbar surface. The current distribution on 
each of the surfaces is homogeneous, except in the corner regions, where a considerable increase in the current 
density is observed. 

A significant feature of the current flow in the system of busbars is the considerable current density 
on the onter surface of the busbars. Figure 4a shows the ratio of the current density for a pair of busbars 
powered by a capacitor versus the busbar thickness. The busbar length is l = 9. m and its width is h = 0.1 m, 
the spacing between the busbars is b = 0.1 m, and the capacitor capa~:itance is G' = 0.012 F. To decrease 
the onter surface current density, one can use a compound busbar whose inner part is made of copper and 
whose outer part is made of a material with large resistivity. For such a two-layer busb&r (curve 2 in Fig. 4b) 
with an outer steel layer, the current density on the outer surface is 2.5 times lower than that in the case of 
a homogeneous copper busbar (curve 1) of the same thickness (Fig. 4b). 

At the stage of magnetic-flux compression, the current-density distribution changes. The current density 
on the inner surface of the busbars decreases severMfold, the current distribution becomes more uniform, and 
the characteristic skin-layer regions disappear. The calculation results indicate a decrease in the resistance 
of the BMG in the generation regime compared to estimates using the skin-layer model. However, in reality, 
there may be a~lditionM losses due to contact phenomena on the boundary between the armature and the 
busbars. Therefore, the main chMlenge in designing such a BMG is to ensure reliable contact of the armature 
with the current-carrying busbars. 

To determine the performance of the setup, we performed experiments on a large-scale BMG model 
designed as a one-turn generator with channel inside diameter (caliber) 125 mm. This BMG has two 
diametricaJly opposite copper busbars separated by insulation inserts and placed in a body made of fiberglass 
winding. The armature of the one-turn generator is made of an aluminum alloy in the form of a barrel with 
a jacket having thin ring ribs, which collapse during motion along the generator channel. 

The BMG model was tested in various regimes. The bMlistics was tested by shooting the armature 
with the disconnected electrical circuit. The capacitor bank was discharged on the BMG without entry of 
the armature in order to test the powering system. Finally, we performed complex experiments in which the 
aamaature was shot into the generator volume at the moment the powering current was nearly maximal. The 
tests were performed for two types of load: 

1) A low-impedance load in the form of shorting metal jumpers at the outlet of the generator busbars; 
2) A geophysical loop model having much higher inductance and impedance than those in the first 

case. 
Figure 5a shows the experimental dependence of the current for the case of shorting elements at the 
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exit from the BMG. The measurement results are as follows: initial powering current 77 kA, maximum current 
generated by the BMG 103 kA, and current gain ki = 13. 

The experimental dependence of the current i on time t can be approximated by the dependence used 
in calculations of explosive magnetic generators: 

L ' I + L z  exp [ 2R~'77- ] i ( t)  = io Lz + L ' ( l - v t )  L, - ( v ~ -  t~ 
o 

Here L ~,/~, Lz, l, and u have the previous meaning, and to is the t ime from the beginning of powering to the 
moment the armature enters the BMG. It is assumed in this case that  during the time of reswitching of the 
BMG circuit by the armature (100-120 psec), energy cumulation does not occur, the generator inductance 
varies linearly, and the ratio I ~ / L  ~ is constant throughout the operating of the generator. As a result, the 
foLlowing performance data  for the BMG axe obtained: l:g/L I = 6 sec - z D , / ~  = 3.84.10 -e 12 -1 �9 m -z, energy 
gain ~ = 9, and magnetic-flux conservation factor k~ = 0.75. 

Several tens of experiments were performed using the first type of load with considerable t ime intervals 
between series of starts (from several days to a year). The interval between starts in one series was rather 
short (10-100 rain). In all experiments, the maximum current was close to 1 MA. This indicates the possibility 
of ensuring fairly stable performance of installations based on the BMG. 

In experiments using a load in the form of a geophysical loop model, primary attention was given to 
the recording of current curves. From results of discharges of the capacitor bank on the joint load BMG + loop, 
we obtained the loop performance data (Lz = 0.273 pH and Rz = 0.66 m12). Figure 5b shows the generator 
current curve 1 for such a load. At the moment the armature entered the generator, the discharge current of 
the bank was nearly maximal and was equal to 92.5 kA. As was expected, the load current did not increase 
because of the insignificant inductance per unit length of the BMG model (0.64 pH/m).  By the end of the 
generator operation, the current decreased by a factor of 1.5, but the effective pulse duration increased by a 
factor of five compared to the  duration of the pulse from the capacitor bank on the same load. This shows 
the possibility of using the BMG as a pulse former in geophysical studies. Processing of the experimental 
current curve with the aim of determining the internal characteristics of the generator is of great interest. The 
generator inductance was determined with sufficient accuracy (0.96 pH) in measurements using an electrical 
bridge, and it agrees with the one determined from the curves of the capacitor discharge through the generator 
busbars on the loop. 

The BMG resistance was approximated by a calculation model with a unilateral skin layer. The 
resistance per unit length was determined from the formula 

where heft is the effective width of the contact surface of the busbars, and the time t is reckoned from the 
moment the capacitor begins to discharge. In the case of a rigorously unilateral distribution of the current on 
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the inner (from the side of the channel) surface of the busbar, the effective width coincides with the actual 
width of the busbar h. When the two-dimensional character of the field distribution is taken into account 
more rigorously, a skin layer also develops on the outer side of the busbar and its lateral surfaces. Hence, the 
effective width of the current layer should be greater than the actual width of the busbar. 

Figure 5b shows calculated curves 2 and 3 for values of heft equal to 2h and h, respectively. It is 
evident that the calculated curves lie well above the experimental curve. Only for the value heft = hi2 does 
the calculated curve 4 practically completely coincide with the experimental curve. However, this coincidence 
takes place only to a certain moment (,~1 msec), after which the calculated curve is below the experimental 
curve. The comparison performed leads to the following assumptions. In the initial period of motion of the 
armature in the BMG, the generator resistance includes not only the resistance of the skin layer but also 
an additional resistance, which can be explained by contact effects and the nonuniform current distribution 
on the surface of the busbars (corner effects). Some time after the entry of the armature into the generator 
(1 msec), these additional resistances considerably decrease, and this can be explained by "fitting" of the 
armature and other effects. In this case, the internal resistance of the busbars becomes much lower than the 
values calculated using the skin-layer model. The last circumstance was noted above in the discussion of the 
two-dimensional distribution of the field in the generator in the presence of the e.m.f, induced by the motion 
of the armature. As a result, the general resistance of the BMG considerably decreases (at t > 1 me) and the 
experimental current curve becomes flatter. 

The studies performed show the possibility of designing a new type of magnetocumulative generator 
based on contact interception of the current of a linear system of busbars using a moving current-carrying 
armature. Primary sources of energy used to accelerate armatures (gunpowder, gas and liquid combustible 
mixtures) have high energy density. This will make it possible to develop high powers on such installations at 
small mass and dimension characteristics. Coupling such sources to loads of various types requires additional 
investigation. 
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